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A linear representation of the diffusion of
solvents into insoluble polymers

BERNHARD REISER*

Max-Planck-Institut fur Festkorperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 1,

West Germany

The amount, g, of a solvent taken up by a sample of an insoluble polymer during a time,
t, can be represented accurately by the relation g = t/(at + b), which has a very simple
linear equivalent: (t/g) = at + b, where a and b are constants. The same behaviour is also
shown by the exchange of ions in an ion-exchange resin and in the case of a swell process,
where g may be measured as a volume increase. The kinetic relation ¢ = k(Q — q)?, where
Q=aland k = Q %, is compared with Fick's first law of diffusion and the
dependence of the diffusion coefficient and the concentration gradient on g is discussed.

1. Introduction
In this article two points will be considered:

(a) The diffusion of a solvent into an insoluble
polymer, shown in Fig, 1, can be expressed as a
linear function, shown in Fig. 2. This will be out-
lined in Section 2.

(b) The above relation leads to a kinetic
expression which can be compared with Fick’s
first law of diffusion. For the case where the
amount g of the solvent in the polymer approaches
its limiting value, Q, it can be shown accurately
that the diffusion coefficient and the concen-
tration gradient are proportional to the amount,
Q —q, of solvent which can be taken up by the
solvent during further diffusion. Particularly in the
case of the diffusion coefficient this propor-
tionality seems to be reasonable and can be
expected also for ranges of g far from Q because
(Q — q) is a measure of the space open for further
diffusion. These points will be considered in
Section 3.

2. The diffusion of a solvent into an
insoluble polymer

The measurement of the amount of the solvent in

the polymer can be performed either by mass or

by volume measurements. A mass, M(0), or vol-

ume, V(0) is selected from a piece of the poly-

mer. Then this sample is plunged into the solvent.

After a time, ¢, the mass M(¢) or the volume V(¢)
of the sample is measured. Provided that the poly-
mer is insoluble in the solvent the amount m(¢) of
the solvent within the polymer is

m(t) = M(t) —M(0). (1)

However, m(t) depends on the size of the polymer.
A size independent parameter is

a0 = 20

T M(0) 2)

In the case that the volume V(¢) of the polymer
sample is measured, it is assumed that the volume
change is proportional to m(?):

m(t) = v(V(2) — V(0)),

where v is a proportionality factor.
A measure independent of the size of the polymer
sample is

3)

V(@®) — V(o)
(0)

Measured values of g(¢) are shown in Figs 1 and 2.
They are compared with the functions

g, () = v @

7= — )
(tlqg) = at+b. 6)

The constants @ and b are easily derived from Fig.
2 by the linear expression, Equation 6.
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Figure 1 Up-take g(¢) of solvents by samples of insoluble
polymers during a time, #. The explanation of the numbers
and symbols is given in Table 1.

The results shown in Figs 1 and 2 for caout-
chouc synthetic rubber display a swell-process.
Instead of q, g, was used and it is seen that the
linear relation is obeyed very well. The example of
an ion-exchange resin shows that in this case also
the linear relation may hold accurately.

3. Comparison of the diffusion rate with
Fick's first law of diffusion

Equation 6 leads to the following rate expression

for the up-take of solvent:

d = k(Q—q); @)
0 = lima(®, ®)
where
k= b"'Q"? ®)
andQ=a"".
Fick’s first law of diffusion [1] reads
dn = —D.Ve.dd4; (10)

integration of the whole surface, asssuming a mean
concentration gradient, gives

— DA, (11)

n =
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Figure 2 The relation g = g(z) shown in Fig. 1 represented
as a linear expression (#/g(f)) =at + b. The constants a
and b as well as the explanation of the other numbers and
symbols are given in Table I.

where n is the amount of solvent (mol) through
absorbtion into the polymer specimen, and 4 is
the surface area of the specimen. If the molecular
weight of the solvent is S, then z and g are related
by
nS
= ——, 12
q M) (12)
Hence, Fick’s diffusion law, expressed in terms
of g, becomes

d = DoVeAd (13)
where Dy DS | -
M(0)
Comparison with Equation 7 gives
DyVe = K(Q — q_)z‘_/_{ll. (15)

For some polymer samples the surface area, 4, is a
constant. The concentration gradient may be
developed into a Taylor series expansion at some

point Q' < Q:
— — d —
Ve(g) = Ve(Q) + o W@y @—-0H+...
! (16)
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For Q' approaching Q the first term vanishes
because

lim Ve = 0.

Q]'I—IPQ V(@) = qlgnq Ve = fim,

17

For g nearly equal to @ only the first term of the
Taylor series is significant:

Vem G+ (Q—q);asq > Q,
d

¢ = — lim — (@) >0.

1 Q,Eleq @)=

(18)

where

This means that for ¢ approaching @ for a sample
of a polymer with a given surface, Vc, and because
of Equation 15, Dy is proportional to (Q — q).
This result seems also to be reasonable for
q<Q. (Q —q) is a measure of the empty volume
which may take up further solvent. It should be
expected that the diffusion coefficient is propoz-
tional to this free volume open for diffusion. One
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may imagine that the intermolecular space within
the polymer is filled more and more with solvent
molecules and that the number of molecules
entering subsequently is proportional to the mag-
nitude of the empty space.
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